Urban Change Makers
Terminology

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRT</td>
<td>Bus rapid transport</td>
</tr>
<tr>
<td>BOTTOM-UP</td>
<td>Grassroot lead process</td>
</tr>
<tr>
<td>CAR-CENTRISM</td>
<td>Urban planning focused on the priority of car use</td>
</tr>
<tr>
<td>CC</td>
<td>Critical Cartography</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>EV</td>
<td>Electric vehicle</td>
</tr>
<tr>
<td>E-BIKE</td>
<td>Electric powered bicycle</td>
</tr>
<tr>
<td>E-CARGO BIKE</td>
<td>Electric powered cargo bike</td>
</tr>
<tr>
<td>E-CARGO THREE WHEELER</td>
<td>Electric powered cargo three wheeler</td>
</tr>
<tr>
<td>E-MOBILITY</td>
<td>Electric mobility</td>
</tr>
<tr>
<td>FIG.</td>
<td>Figure</td>
</tr>
<tr>
<td>GENTRIFICATION</td>
<td>Process where a housing or district renewal triggers the displacement of low-income residents through the arrival of higher-income ones.</td>
</tr>
<tr>
<td>HCQ</td>
<td>Historic centre of Quito</td>
</tr>
<tr>
<td>HOLISTIC PLANNING</td>
<td>A way of planning that considers the intertwining of components beyond the own discipline in a synergistic process.</td>
</tr>
<tr>
<td>INFORMALITY</td>
<td>Unofficial work condition without conditions that safeguard the safety and integrity of the individual</td>
</tr>
<tr>
<td>INTEGRATED TICKETING</td>
<td>Possibility of combining in a public transport journey different transport modes with a unique ticket</td>
</tr>
<tr>
<td>INTERMODAL HUB</td>
<td>Place where different transport means conclude and passengers can easily change between them.</td>
</tr>
<tr>
<td>LAST MILE CONNECTIVITY</td>
<td>Final connection from the last public transport station to the final destination.</td>
</tr>
<tr>
<td>LEZ</td>
<td>Low Emission Zone</td>
</tr>
<tr>
<td>MODERATE SPEED ROAD</td>
<td>Road where vehicles do not exceed the 45 km/h</td>
</tr>
<tr>
<td>LOW-CARBON VEHICLE</td>
<td>Vehicle with small CO₂ emissions</td>
</tr>
<tr>
<td>MICRO MOBILITY</td>
<td>Small, lightweight vehicles reaching speeds typically below 25 km/h [bike, e-bike, cargo bike, e-threewheeler]</td>
</tr>
<tr>
<td>MIX-USE</td>
<td>Diversity of land uses</td>
</tr>
<tr>
<td>NMT</td>
<td>Non-motorized Transportation</td>
</tr>
<tr>
<td>NUA</td>
<td>New Urban Agenda</td>
</tr>
<tr>
<td>PARTICIPATORY PROCESS</td>
<td>An inclusive method where a wide set of actors is involved in the decision-making process</td>
</tr>
<tr>
<td>PESTLE</td>
<td>Political, Economical, Social, Technological, Legal, Environmental</td>
</tr>
<tr>
<td>SDG</td>
<td>Sustainable Development Goals</td>
</tr>
<tr>
<td>SOCIAL COHESION</td>
<td>Linkage of members from different social groups.</td>
</tr>
<tr>
<td>SPATIAL SEGREGATION</td>
<td>Visible or invisible division among the spaces that different social groups inhabit</td>
</tr>
<tr>
<td>SUSTAINABILITY</td>
<td>Capacity of satisfying the present needs without damaging future generations integrating environmental, social and economical aspects</td>
</tr>
<tr>
<td>SWOT ANALYSIS</td>
<td>Strengths, weaknesses, opportunities and threats’ Analysis</td>
</tr>
<tr>
<td>TOD</td>
<td>Transport oriented development</td>
</tr>
<tr>
<td>TOP-DOWN</td>
<td>Process lead from above a vertical hierarchy, usually from the government without fully acknowledging the agency of further involved actors</td>
</tr>
<tr>
<td>TRANSDISCIPLINARITY</td>
<td>Academic strategy where inputs of diverse disciplines frame a holistic approach</td>
</tr>
<tr>
<td>URBAN CATALYST</td>
<td>Strategy that boosts urban developments</td>
</tr>
<tr>
<td>URBAN SPRAWL</td>
<td>Disperse city expansion, usually with non-official urban planning</td>
</tr>
<tr>
<td>00.</td>
<td>TERMINOLOGY</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>01.</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>02.</td>
<td>PASIG CITY</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
01. Introduction

1.1 Project Frame
1.2 Sustainable Transport
1.3 Solutions Plus
1.1 Project Frame

As the world is confronted with climate change and cities continue to spill beyond their boundaries, the Global Agendas uniformly recognise an urgent need for inclusive and sustainable urban development strategies.

The Urban Change Makers studio draws attention to current global transport challenges. Based on the notion that the provision of infrastructure promotes accessibility and that accessibility promotes equality, the studio has developed proposals for innovative urban mobility solutions in Quito and Pasig - two cities in the Global South that have been struck heavily by congestion and social divides.

In an aim to reduce individual transport modes in favour of higher public demand, the students investigate multimodal networks. A series of reading sessions formed the theoretical basis for the spatial interventions. Reaching beyond the infrastructural challenges these two cities are faced with, the Urban Change Makers studio addresses local identity, informality and social marginalisation in an attempt to develop holistic place-making strategies for the public realm and its nearby communities.

Thus, what once was a divider can soon become a threshold, a moment for activities, exchange and community.
1.2 Sustainable Transport

Transportation is a basic need for a meaningful and dignified life. Access to transport provides access to the labour market, health care, education and human interactions. Hence, transport mobility it is closely linked to social upward mobility.

The ability of a person to overcome spatial separation is conditioned by: income, gender, access to vehicles, physical ability, knowledge of transport and its path composition.

Pursuing the Global Agendas in transitioning towards sustainable transport, the following parameters be taken into consideration: access, equity, safety, efficiency, affordability, health and environment.

“Transport: a pre-requisite for a life of meaning and value”

- 23% CO₂ emissions worldwide caused by transport
- 4.2 MILLION Deaths due to air pollution
- 1-10% National GDP lost in urban congestion
- 75 MILLION Cars purchased in 2019

Transit-Oriented Developments have found their way into city planning, whereby new developments or densification projects are located within walking distance of public transport hubs. Because offering a variety of transport modes will increase accessibility and the likelihood that people will choose public transport over private vehicles. While TODs do address problems relating to performance and feasibility, the perception of the end user, the human, is often sidelined in this approach.
The studio 'Urban Change Makers' worked closely with the SOLUTIONSplus initiative, a global platform aiming to enable transformational change towards sustainable urban mobility through innovative and integrated electric mobility solutions. Through the lens of the Paris Agreement, the Sustainable Development Goals and the New Urban Agenda, SOLUTIONSplus fosters shared, public and commercial e-mobility projects in many partner cities across the world.

During the summer term of 2020, it was our task frame a low-emission mobility concept for specific zones of two partner cities: Quito and Pasig City. Throughout the process, we were in regular exchange with the SOLUTIONSplus experts' network and government representatives from both cities. The design output developed for each study case is now being considered by local actors and SOLUTIONSplus to trigger the implementation of electric and low-carbon mobility solutions in Quito and Pasig city.

“Solutionsplus fosters shared, public and commercial e-mobility solutions in many partner cities around the globe”
02. PASIG CITY

2.1 Project Outline
2.2 City-Wide Analysis
2.3 Traffic Analysis
2.4 SWOT Analysis
2.5 Charging Infrastructure
2.6 Search for Suitable Hubs
2.7 Holistic Approach
2.1 Project Outline

How can we foster an inclusive transition towards a more sustainable and a more accessible transport network?

In this case study, we would like to show how a holistic approach to infrastructural and city planning can foster inclusion and accessibility for a large cross-section of the population, while opening up new economic opportunities. With private vehicle ownership on the rise and increased challenges concerning congestion and pollution, the Philippine government is committed to propelling the transition towards e-mobility. As part of our case study in Pasig City, we will be looking into the implementation of publicly accessible battery swapping and charging facilities for electric 2/3 wheelers across the city.

Searching for suitable locations across the city, we will strategically build a network of stations. In a further step, we will be showing how these facilities could work on a micro-scale and which benefits they could bring to the community as well as to public and private stakeholders.

The hubs we propose will have extended functions, such as parcel drop-off and pick-up stations operated by nearby shops and a smart technology platform that will serve the EV and public transport system and that will foster communication as a two-way transaction between the project and its users.

How can mobility and accessibility strategies improve specific areas? And how can infrastructural nodes double up as public realm, accessible to all? We see these new hubs as an opportunity to provide the city and its people with substantial added value.
Using sponsors’ colour palette to paint lanes offers opportunity for free marketing.

Avoiding unnecessary journeys. Simplified last mile connectivity.

Gaining public acceptance through place-making strategies.

Encouraging EV ownership. Raising awareness for sustainability. Supporting integrated travel system.

Better overall coverage will increase overall demand for public transport.

FIG. 3: PILOT PROJECT: PHILPOST

Our study builds upon the test fleet of 50 e-cargo bikes implemented by the national postal service and their support for the new network of electricity facilities. Integrating this charging and battery swapping infrastructure into existing multimodal nodes is an opportunity to expand the e-mobility system into the public transport network, mitigating widespread skepticism among the population.

FIG. 4: CO-BENEFITS

We emphasise the importance of working closely together in a government-neighbourhood partnership in order to build a successful project. To show how different stakeholders can support each other in achieving their respective goals, we set up a rational of co-benefits. Thereby the same conceptual considerations can have different gains for each stakeholder.
2.2 City-Wide Analysis

Understanding the city of contrasting neighbourhoods to tackle their common challenge of traffic congestion.

FIG.5: ISLANDS AND BORDERS
Pasig, a highly urbanised city within the Metro Manila area of the Philippines, has a population of around 750,000. Rivers and floodways divide the city of Pasig into several islands. While they are reconnected via bridges, these waterways have a tangible effect on the formation and segregation of Pasig’s neighbourhoods.

The wealthy streets of Ortigas Center in the west were formed within largely flood-free zones whereas less privileged neighbourhoods such as Nagpayong in the south-east are visibly less accessible.

FIG.6: ORTIGAS CENTER
As the business and smart city district, Pasig’s wealthiest area is densely packed with high-rises. While congestion is a problem, light mobility lanes have been implemented to ease traffic.

FIG.7: NAGPAYONG
A populous neighbourhood in the south of Pasig, speckled with informal housing, this area is densely built up around a narrow road network. Nagpayong is somewhat geographically secluded from city.

FIG.8: MANGAHAN
Mangahan is a moderately inhabited area in the northern part of the city. The neighbourhood has a mix of different residential types. Here, gated housing developments are on the rise.

FIG.9: CITY HALL
The administrative centre accommodates City Hall and the central post office. It is set around the central market of Pasig and is bustling with on-street activity, with many bus and jeepney lines terminating here.

FIG.10: ZONING MAP
A brief look at Pasig’s zoning map shows uses ranging from residential to industrial. Yet street views show a high variance in the spatial qualities of the neighbourhoods.
2.3 Traffic Analysis

Overlapping delivery routes, travel routes and zones as a basis for new multimodal transport nodes in Pasig

FIG.11: ANALYSIS OF ROUTES
Looking into the main bus and jeepney routes across the city, we found that many of the routes operated by buses were also covered by jeepneys as a more affordable option. Trikes operate on various routes within and beyond the bus and jeepney networks as they tend to be small enough to traverse the narrower alleys and paths within the neighbourhoods.

One main hindrance encountered in this approach, however, is the fact that electric 2-wheelers are currently banned from traversing national roads. This makes the journey to the vehicle registration office legally impossible for any new or potential buyer. With this in mind, we created a secondary network of roads that followed the main public transport routes through the city. This way, there is still merely a poor connection towards Marikina in the north and Cainta in the west. Hence, it is recommended that the governing bodies clarify this status.

When it comes to public transport Pasig City offers a number of choices, ranging from an LRT line to buses, jeepneys and trikes. A small station-based bike-sharing system has been implemented, mainly covering Ortigas Center. Furthermore, there have even been recent attempts to overhaul the jeepney fleets and to exchange them for e-vehicles. However, these attempts have been deemed anti-informal and anti-poor and have sparked a series of strikes in the past, leaving the population with a feeling of wide-spread skepticism when confronted with the transition towards e-mobility.

We initiated our analysis by looking into main public transport routes with a focus on bus and jeepney routes that could profit from additional or improved last-mile connectivity by means of electric 2/3-wheelers. Next, we cross-checked these with the main PhilPost delivery route beyond the city limits to gain an understanding of which routes could be worth strengthening.

FIG.12: PHILPOST DELIVERY ROUTES
PhilPost's delivery area covering Pasig and nearby towns. There is a central post office at City Hall as well as logistic centres on the outskirts.

FIG.13: SECONDARY ROUTES
national roads
main routes towards nearby cities

FIG.14: APPROACH TO HUBS
By overlaying main delivery routes with main public transport routes, we can integrate the charging facilities into dense areas to serve the general public.
2.4 SWOT Analysis

Building upon the high level of multi-modality in Pasig’s transport system

<table>
<thead>
<tr>
<th>S (Strength)</th>
<th>W (Weakness)</th>
<th>O (Opportunity)</th>
<th>T (Threat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. High level of multi-modality</td>
<td>1. No integrated public transport system</td>
<td>1. Implementing e-mobility + light mobility lanes</td>
<td>1. Operational area limited by highways</td>
</tr>
<tr>
<td>2. Rising demand for 2-wheeler ownership</td>
<td>2. Lack of awareness for sustainability and e-mobility</td>
<td>2. New hubs can double up as public realm</td>
<td>2. Scepticism among population</td>
</tr>
<tr>
<td>5. Expansion of e-mobility fleet and light mobility lanes during Covid-19 lockdown</td>
<td>5. Narrow last mile connections</td>
<td>5. Increase public transport demand through better last mile connectivity</td>
<td>5. Increase in traffic through rise of private vehicles + heavy delivery vehicles</td>
</tr>
<tr>
<td>7. Multiple usage of the space gives room to experiment even in a dense setting</td>
<td>7. Lack of proper infrastructure for transition point (Shaded space, Public seating)</td>
<td>7. Light mobility lanes</td>
<td>7. Effecion of unaffordability + exclusion</td>
</tr>
<tr>
<td>9. Narrow road infrastructure</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To understand the city’s position in terms of strength, weakness, opportunity, and threat on the transportation system; we applied a swot analysis on Pasig.

STRENGTHS
Pasig provides a wide range of transportation modes such as buses, jeepneys, trikes, hi-aces, bikes, and trains. Through the high levels of congestion citizens are becoming more enthusiastic about the use of 2-wheelers which can help to establish a light mobility system around the city and reduce CO₂ emissions. Moreover, to promote e-vehicle use in Pasig the city government is trying to encourage people further by running an test fleet of EVs with PHLPost and have expanded light mobility lanes during the COVID-19 pandemic. Furthermore, the city has a good 4G connection throughout. Therefore, it could be said that Pasig is technically well equipped for the implementation of a sustainable transportation system.

FIG.16: THE CHALLENGE
Congestion is a pushing challenge. As journey times are hard to anticipate, many are resorting to private 2-wheelers.

FIG.17: STREET SCENE
A busy road in Pasig city where pedestrians dodge the traffic as the road is fully occupied by vehicles due to the haphazard traffic system.
WEAKNESSES
With an unintegrated transportation system, congestion on roads and around stations is a common scenario in Pasig. Many of these stops lack shaded space and public seating. Lack of indicators makes them user-unfriendly. A large number of roads in residential areas are narrow and thus are only accessible for 2/3-wheelers. To develop sustainable futures, citizen involvement must be taken into consideration as these are the end users. Another weakness is the population’s lack of knowledge when it comes to e-mobility, its financing and registration schemes.

OPPORTUNITIES
Despite the weaknesses, Pasig presents several opportunities that can help to improve the current transportation system to a great extent. An integrated transport system could be introduced to the city to ease the high initial investments in EV fleets. Light mobility lanes could support the fight against congestion and pollution and would serve as an incentive to resort to electric 2/3-wheelers. New charging infrastructures could double up as public realm and a platform for the exchange and production of knowledge. With private deliveries on the rise, nearby shops could offer parcel stations to reduce a portion of journeys.

THREATS
Threats can make strengths futile and opportunities unattainable if not addressed suitably. In the case of Pasig skepticism could be a big one as local drivers fear job losses through the e-transition. During a large-scale transition, supportive financial models, policies and incentives can become can become a defining factor for the outcome of the project. In terms of marketing and communication, people should be informed of the sustainable outcome of e-transition and should be invited to the table of decision-makers. Otherwise, rejection and further protests could become a severe threat to the project. Finally, an insufficient initial network of hubs can lead to range anxiety and the subsequent failure of the project.
2.5 Charging Infrastructure

To meet the future demand for charging of the PHLpost EV fleet as well as the increasing number of e-vehicles, Pasig needs to implement sufficient charging infrastructure around the city. But what kind of charging equipment do we envision for Pasig? How high is the demand and how many locations do we require?

Considering the increasing demand and future anticipations we came up with two plausible options for the new electric infrastructure. One is a DC charging point and the other is a battery swapping station. As charging in the hub takes time and subsequently requires more space for parking, pairing charging hubs with battery swapping facilities could mitigate time losses.

One battery-swapping station can store up to 15 batteries at a time while an EV charging post can serve to 8 EVs on an average day. According to the project brief, PHLPost has a fleet of 50 EVs for their operations within their last-mile delivery networks and there are more than 150 electric 2/3-wheelers on the roads of Pasig.

Marketing is key. By taking a holistic approach, we can ensure the success of the project. We propose an initial network of 5-6 hubs with our suggested extended functions such as shelter, seating, parcel stations and light mobility zones. This first network would cover more than 250 EVs. In a second step, the network can be gradually filled in with simplified facilities to serve the growing demand for EVs.

E-Transport
Pasig’s administration has set admirable aims to reach higher sustainability standards and to strengthen multimodal infrastructures within the public transport sector.
To reach their targets the City of Pasig has introduced a test fleet of 50 EVs in partnership PHLPost for their last-mile delivery services. The driver of this project is to exhibit and inform people about the positive effect of e-mobility and to encourage them to use e-vehicles in the future. Currently, PHLPost delivers via electric 3-wheelers. There are plans to introduce further models to their e-fleet. The city government is also aiming to launch further public e-vehicle fleets to improve last-mile connections within the city.

Marketing is key. By taking a holistic approach, we can ensure the success of the project. We propose an initial network of 5-6 hubs with our suggested extended functions such as shelter, seating, parcel stations and light mobility zones. This first network would cover more than 250 EVs. In a second step, the network can be gradually filled in with simplified facilities to serve the growing demand for EVs.

E-Transport
Pasig's administration has set admirable aims to reach higher sustainability standards and to strengthen multimodal infrastructures within the public transport sector.
To reach their targets the City of Pasig has introduced a test fleet of 50 EVs in partnership PHLPost for their last-mile delivery services. The driver of this project is to exhibit and inform people about the positive effect of e-mobility and to encourage them to use e-vehicles in the future. Currently, PHLPost delivers via electric 3-wheelers. There are plans to introduce further models to their e-fleet. The city government is also aiming to launch further public e-vehicle fleets to improve last-mile connections within the city.
2.6 Search for Suitable Hubs

Which characteristics make a location suitable for the implementation of a hub?

During our analysis we developed strategies to pin-point suitable hub locations within the urban fabric of Pasig City. We investigated beneficiary settings in order to provide the best possible services to the end users. Following the project outline and the results from our city-wide analyses as well as the SWOT analysis, our next step was to explore possible locations at intersection points between PHLPost delivery network and existing public transport routes.

During our search, our aim was to ensure efficient delivery routes as well as a strengthened sustainable public transport system in the long run. This way, the hubs are sure to serve a large cross-section of the population. A total of 21 hub locations were described and compared. The selected hubs ensure the highest level of multimodality, easy access, sufficient road widths, and offer suitable space to intervene.

In a next step, we inspected the hubs further to select a list of favourites, spread evenly across the city. These hubs reflect qualities such as urban setting, traffic systems, use of the spaces, public access, right amount of infrastructure, level of multimodality, availability of buses and light mobility lanes, commercial activity, overall liveliness, parking possibilities, e-bike sharing or e-mobility services. The hubs are mainly situated along the main roads, while avoiding national roads due to current restrictions. The selection offers nearby commercial units with an opportunity to more economic activity. Most hubs are currently lacking a dedicated bus or light mobility lanes and very few of them have an e-bike sharing system. Most are relatively pedestrian-friendly with space for footpaths, parking bays and zebra crossings, though all of the locations lack public seating as well as sheltered and shaded waiting areas.
FIG. 28: HUB CHARACTERISTICS
Lead by a number of beneficiary hub characteristics we set up a written analysis of possible locations that looked into multi-modality, traffic and urban setting among others.

<table>
<thead>
<tr>
<th>Urban Setting?</th>
<th>Mixed use area - lively</th>
<th>Mixed use area - moderately lively</th>
<th>Mixed use area - lively</th>
<th>Mixed use area - very busy spread out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purgold Ligaya</td>
<td>Edge of mixed use area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosario Market</td>
<td>mixed use area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rizal Medical Center</td>
<td>mixed use area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricity Medical Centre</td>
<td>mixed use area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinagbuhatan School</td>
<td>mixed use area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasig City Hall</td>
<td>mixed use area</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIG. 29+30: PUREGOLD LIGAYA
Our second test hub is situated in the north of the city. The vast context is challenging. However, there is an opportunity for an intervention within this commercial arrangement.

For our first set of hubs, we have sought out 6 locations that support the strengthening of inter-city networks, while steering clear of national roads. Namely: Pasig city Hall, Pinagbuhatan High School, Tricity Medical Center, Rizal Medical Center, Rosario Market and Purgold Ligaya. Among these, City Hall plays a key role as the central post office and market are located here. In addition, many of the transport lines terminate here, resulting in high levels of public transport. Pinagbuhatan offers a suitable high-density local setting to test our strategy. Tricity Medical Center offers the highest level of multimodality, while Rizal Medical Center has the largest space available for interventions with public service buildings nearby. Puregold Ligaya connects the city with LRT and highway. Rosario Market offers a good transition to the inner city. Following this selection, we developed schematic approaches to our spatial interventions at these locations.
This northern location presents an opportunity as a point of transition between the inner and the outer city.

Situated in the geographical centre of the city, a mobility hub here could strengthen the various available transport modes nearby.

Pasig city hall is the central hub for all the transports as well as it hosts the PHLPost central Pasig office (marked in green). With the central mall, the place is commercially very active.

This location is between Ortigas Centre and City Hall. It’s bay typology is suitable for the implementation of our hub concept.
2.7 Holistic Approach

Through involvement and communication, we can develop successful place-making strategies for thriving cities and communities. And for the common good.

High initial investment costs, lack of familiarity with the topic as well as a sense of feeling excluded from the decision-making processes have lead to wide-spread skepticism among operators when it comes to the transition towards e-mobility. We advocate taking a holistic approach from planning to construction to daily operation. One method to ensure the success of the project is to pass supportive policies and to develop a set of incentives in order to persuade buyers, retailers and drivers alike that there are many benefits that can come out of the e-transition.

FIG.40: POLICIES + INCENTIVES
A list of policies and incentives developed with the support of CleanAir Asia that could be implemented in the future.

1. Strengthen investments in local design, R+D.
2. Vehicle tax exemption for electric 2/3 wheelers.
3. EV subsidies / funding schemes to buy e-vehicles.
4. Introduce fuel tax.
5. Explore partnerships for dual use of PhilPost EVs outside of shifts.
6. Introduce tax to discourage CBE vehicle registration
7. Clarify registration + road restrictions for electric 2/3-wheelers at national level.
8. Higher tax exemptions for public EVs, lower for private EVs
9. Explore financing schemes for lower income groups
10. Expansion of light mobility lanes

1. Encourage integrated ticketing through free charging.
2. Sponsor partnerships that enable customer advantages e.g. network providers.
3. Introduce charging allowance for PhilPost last mile delivery drivers using e-vehicles.
4. Facilitate introduction of EV sharing systems.
5. Target incentives / bonus systems in partnership with EV retailers.
7. Battery swapping infrastructure with deposit system could reduce EV acquisition costs by 50%
8. Public awareness campaigns.
9. Introduce special number plate options

RIGHT: FIG.41 HOLISTIC CITY
03. MOBILITY CONCEPT

3.1 Design Strategy
3.2 Hub Module
3.3 Spatial Solutions
3.4 Overall Benefits
3.1 Design Strategy

During the analysis of the city and its stakeholders we recognised the importance of going beyond the mere implementation of charging and battery swapping facilities. Moreover, our design strategy shows how the hubs and its surrounding surfaces can address topics such as congestion, road safety and economic activity.

In a region where weather conditions oscillate between heavy rainfalls and hot sunshine, where public realm is scarce and where the car rules the road, our intervention entails a sheltered waiting area with seating, battery swapping and charging areas beneath. It is surrounded by a slow zone for light mobility, EVs and includes a bay for stopping public transport vehicles.

The sheltered area is shifted away from the nearby shop fronts, thus creating an interim space that is oriented both towards the street and towards the commercial facades. Around the sheltered area, we envision a light mobility area that is painted in the hub sponsor’s colours. The exact pattern and appearance can be executed by locals, improving local identity and involvement. This area that stands out from the rest of the road, can have a slowing effect on traffic, thus improving road safety and opening up the zone as extended public realm.

FIG.2: STREET SECTIONS
Suitable roads must have minimum widths that allow for smooth traffic flows. The hub then sections off a secondary part of the road that forms a slow zone.

RIGHT: FIG.1: DESIGN CONCEPT

Hub is oriented towards shops to maximise spatial qualities of public realm involvement of local shops to provide parcel drop-off and pick-up stations

light mobility area at hub shaped by locals in sponsor’s colours

light mobility lanes

commercial activity

public transport bay

pit-stop for EV charging and battery swapping

slow zone becomes extended public realm

road width allows for jeepneys to overtake

slow zone: stopping, swapping + charging

LOWER PUBLIC REALM USE

HIGHER PUBLIC REALM USE
3.2 Hub Module

The hub itself is made of lost-cost materials as a simple, self-build construction. In their initial implementation, all hubs follow a modular system - thus lowering investment costs. Beyond lowering construction costs, the assembly together with locals under the guidance of professionals can have positive effects on the way the community welcomes the project and the e-transition as a whole.

To date, the City of Pasig is confronted with unclear traffic and transport situations. Once constructed, the module will provide the hub with increased visibility, thus indicating EV facilities, parcel pick-up points and public transport nodes from afar. Furthermore, the lively hub will attract economic activity to the area.

A congregation space on the upper floor offers opportunities for local groups to gather on the regular.

After initial construction, in a second step, the hub could and should be appropriated and adapted by it’s end users, thus creating a unique appearance for each hub. This way, the locals get to make their own public realm which will lower the risk of vandalism and make sure locals feel a sense of responsibility for their upkeep. The hubs will differ in terms of outer cladding and decoration, colour schemes and atmosphere - even though they are all originally made from the same module. For instance, one hub could gain added solar lighting, another might have a more closed facade over time.
3.3 Spatial Solutions

How can sustainable urban mobility and accessibility strategies specifically improve targeted neighbourhoods?

As part of our design brief, the area around Pasig City Hall was suggested to us as a test area. However, for our test area, we would like to explore how these hubs can trigger benefits on a more local network and what the overall effects are if we offer extended functions such as parcel stations and locally co-produced slow zones.

Hence, within our network of suitable hubs, we are applying our design strategy to two hubs that differ largely in their urban contexts in terms of density, economic activity and multi-modality.

The first is set in the southern part of the city, in Pinagbuhatan and the second at Puregold Ligaya in the north.

FIG.5: TEST LOCATIONS
As part of our design brief, the area around Pasig City Hall was suggested to us as a test area. However, for our test area, we would like to explore how these hubs can trigger benefits on a more local network and what the overall effects are if we offer extended functions such as parcel stations and locally co-produced slow zones.

Hence, within our network of suitable hubs, we are applying our design strategy to two hubs that differ largely in their urban contexts in terms of density, economic activity and multi-modality.

The first is set in the southern part of the city, in Pinagbuhatan and the second at Puregold Ligaya in the north.

FIG.6: FROM ABOVE
Our spatial approach is applied to Pinagbuhatan High School by nestling the scheme into the slightly wider bend of the road.

FIG.7: PINAGBUHATAN HIGH SCHOOL
In this low-rise high-density area in the south, we are able to imagine an array of opportunities for nearby shops and communities.
Our second test location presents a far wider setting. Formed by large-scale fly-overs and multi-lane highways, the urban context is focused on traffic, not on people. Here, our hub revives the human scale. It provides a space for pedestrians, travellers and passers-by. Its position strategically connects two existing bus and jeepney stops.
3.4 Overall Benefits

By implementing several hubs across the city, we can ensure the acceptance of the project, while creating an array of economic and social opportunities along the way. Smart technology can be broadend as needed to serve as a communication and skill development platform. The module that is raised off the ground can even serve as an emergency and distribution shelter during risk scenarios such as floods and, most recently, pandemics.

A network of hubs that reaches beyond the provision of charging facilities can have a wealth of possibilities with numerous direct and indirect positive effects.

FIG.9: POSSIBLE HUB OUTCOMES

FIG.10: OVERALL BENEFITS
04. References

COVER IMAGE

01. INTRODUCTION

FIG. 9 Google. (2019). City Hall Pasig. Retrieved July 06, 2020, from https://goo.gl/maps/P1Rg7PtD5x60fKzU6

FIG. 37 Google. (2019). City Hall Pasig. Retrieved July 06, 2020, from https://goo.gl/maps/P1Rg7PtD5x60fKzU6

02. PASIG

FIG. 1-5 Lees O., Rony Y.I. (2020) Rethinking multimodal urban mobilities - Urban Change Makers Design Studio - Pasig. Habitat Unit, Technical University of Berlin.

FIG. 9 Google. (2019). City Hall Pasig. Retrieved July 06, 2020, from https://goo.gl/maps/P1Rg7PtD5x60fKzU6

FIG. 37 Google. (2019). City Hall Pasig. Retrieved July 06, 2020, from https://goo.gl/maps/P1Rg7PtD5x60fKzU6

02. MOBILITY CONCEPT

FIG. 1-10 Lees O., Rony Y.I. (2020) Rethinking multimodal urban mobilities - Urban Change Makers Design Studio - Pasig. Habitat Unit, Technical University of Berlin.
Urban Change Makers
As the world is confronted with climate change and cities continue to spill beyond their boundaries, the Global Agendas uniformly recognise an urgent need for inclusive and sustainable urban development strategies.

The Urban Change Makers studio draws attention to current global transport challenges. Based on the notion that the provision of infrastructure promotes accessibility and that accessibility promotes equality, the studio has developed proposals for innovative urban mobility solutions in Quito and Pasig - two cities in the Global South that have been struck heavily by congestion and social divides.

In an aim to reduce individual transport modes in favour of higher public demand, the students investigate multimodal networks. A series of reading sessions formed the theoretical basis for the spatial interventions. Reaching beyond the infrastructural challenges these two cities are faced with, the Urban Change Makers studio addresses local identity, informality and social marginalisation in an attempt to develop holistic place-making strategies for the public realm and its nearby communities.

Thus, what once was a divider can soon become a threshold, a moment for activities, exchange and community.